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e The Cascades: a peculiar landscape

e The hydrologic plumbing system of the
Oregon Cascades

o Implications for geomorphic processes
and water quality

« How might this apply to Battle Creek and
environs?
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Explanation

0 Laokes and Reservoirs
Study Area Boundary
Major rivers and streams

Elevation, in feet above s¢
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Flood of 96 resculpts
Deschutes and Clackamas rivers

Nature’s chlsel i
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What we learned...

_.--I_-"‘.-lrl-_nﬂ_-_a_. . T

=.+ Extremely stable flow regime

™ e Very little sediment transport
 Modern big floods don't do much

« Big dams don’t do much (at least to
the physical channel)

« Ancient big floods did a lot!




“The Deschutes is of especial interest to
geographers as it exhibits certain
pecullarltles not commonly met er: o

A

GEOLOGY, GEOMORPHOLOGY, AND HYDROLOGY

PECULIAR

OF THE DESCHUTES RIVER, OREGON

RIVER
miA' .

JIM E. O'CONNOR AND GORDON E. GRANT, EDITORS

O’Connor & Grant, 2003



Are there other peculiar places?
: { \\/j\\

e
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Y
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Drains an uplifted,
young volcanic
arc,

squarely in the path
of westerly
prevailing winds,
at a temperate
latitude,

near a source of
marine moisture.



- High Cascades

Western Cascades
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Unit Discharge (cms/km )

U,

High Cascade:

McKenzie River at Belknap (374 km?)

Western Cascade:

Little North Santiam (287 km?)
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High Cascades

Western Cascades

Western Cascades

Older (7-30 million year old) volcaniclastic rocks
and basaltic lava flows




- High Cascades

Western Cascades

Youngest McKenzie Pass lava
flows (< 1600 years old)

High Cascades

Young basalts, basaltic andesites,
andesites, pumice, and ash < 7 million years
old







What determines the permeability
of lava flows?

1. Rock lithology

Intrinsic permeability, k (m?2)

102" 10" 107 10" 10 10" 10
1 N A N AN TR (N TR A A O A

Gravel I

Clean sand T

Silty sand [ —

Silt, Loess [
. ]

Glacial till
Unweathered marine clay E—

Unfractured crystalline rocks N
Shale
Sandstone

]
]
Carbonates I Cascade basalts
]
1

Fractured crystalline rocks
Permeable basalt (Saar & Manga, 1999)

Karst limestone

Frr 1Tt 1T 1T 1T 1 T"
Graphic after Hornberger et. 104 1012 1010 10® 108 10 107

Al, 1998 Hydraulic conductivity, K (m/s)



. Flow structure
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3. Layering within flows Fre)

and multiple flows Epy—r—y
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Groundwater flowpaths and geologic history

Cascade
crest
Scott Mtn.
Western
Cascades
cold

McKenzie Spring

/ River > —

Il'l \ h t

\". spring

Fault \
1T km
West \/

(Jefferson et al., 2006)  East

e Aquifers constrained by lava flow geometry not
always by topography

e Flowpaths are shallow with geothermal
influence at fault zones




Extensive
Holocene and
late Pleistocene
lava flows.

- Sand Mtn-Nash Crater

- Belknap Crater
- Scott Mountain
- Collier cone
|:| Sims Butte

Holocene vents

outh Sister
(Jefferson, 2006)

248 5 10 18 20
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How old is the water coming out of the springs?

if 'l’t"ll' /

iohiin
P T i “APH

Trasit ierivd from 3H/e usng
exponential and gamma distributions

4
R

Ages range from 3-14 years
_Flow-weighted average = /.2 years
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How big
IS the
sponge?

BELKMNAPRP LITTLE BELKMNAP
CRATER SHIELD

BASALTS
of the
OREGON
CASCADES

2 * \ High
f4ally Cascades
A = 2660 km?

MT. VWASHINGTOMN MT. JEFFERSOM

BALD DUGOUT SREEMN BLACK BLACK
FETER BUTTE RIDGE BUTTE CRATER



How much water does
the sponge hold?

1500 mm/yr
X 2660 km?

X 7.2 year average
residence time



Crater Lake, Oregon = 17km?3

m USGS -Fhoto by Lyn Topinka, September 1952

e R P e T

‘Lake Mead = 35 km?
Great Salt Lake,

Utah = 19km?3




30 - 120 m (at 15% porosity

Groundwater velocity
v ~ 0.1-0.6 m/day

Hydraulic conductivity
04 < K,< 102 m/s

e R
5 . S 4N I
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36% of March flow
from springs

82% of August flow
from springs

AClear Lake

)

4
Smith River

Trail Bridge #

Blue River),
(above)

Blue River;
(below)

Rainbow

South Fork ™
(below)

Separation Cr.

¢
= v
1]
: :
(o}
Our gauge % South Fork (above) )
# USGS gauge
e Bigsprings

—Spot discharge
Ungauged stream




% of basin classified
as High Cascades

Molalla/
Pudding

N > |
e North ?
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Willamette River at Portland

Santiam
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Western Cascades

* Mobile wood

 Coarse floodplains

& boulder bars

» Rain-on-snow floods

* Flow varies seasonally
» Step-pool organization

& i ‘ ngh Cascades

& « Stable wood
accumulatlons

Lack developed floodplain
 Rare floods

 Sustained flow year-round
* Disorganized bed
structures



Storm of January 30, 2003

Upper McKenzie River
(High Cascades)
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Bull trout
distribution
and geology

Bull Trout Distribution
Status

Present/Mative

Fresent/Reintroduced

Histaric

Major Rivers

Geologic Province

- High Cascades
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Historic linear trends in April 1 Snow Water

Equivalembserved 1950-1997 b. Modeled
Snowpacks have -«

gotten smaller, are | | obRs 5
. . = Ju_,;’ﬂ' I'J-'ﬂ_. .d SRS
melting earlier... g7 & %

=.ﬁ?'.f": T @ H:‘x :'.‘: ’ T

\ SRR

<. ¥

& Mote et a
Canadian Model al., 2005 :

[Jcentral Rocky Mauntains
.Pac'rfin Morthwest

D = cuthem Rocky Mauntains
.Siarra MNevada

...and are projected to
continue to diminish.

Percent Change from 1961-1990 Baseline
&

-80

Gregory and
0 Wolock, 1999
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Snow at risk in a warming climate

- cold snow. low precip. high wind
- cold snow, low precip. low wind

- cold snow. high precip. low wind

- eold snow, high precip, high wind
|: wam snow, low precip, low wind

- wam snow, low precip, high wind
- wam snow, hi precip

Fra. 3. Snow cover classification using a rain—snow threshold of 0°C. At-risk snow is shown in red.

(Nolin and Daly, 2006)



.zrez:s:::.;m 2 How will the

Interplay of
snowpack dynamics
and landscape
drainage efficiency
affect streamflow
regimes under
climate warming
scenarios?

s s
Bsur, acg‘géow
W

bedrock
Qf'ounawa

A atr
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Hydrograph
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Using a hydrologic model (RHESSys) to explore
streamflow response to climate warming

GIS Preprocessing INPUTS
TOPOGRAPHY  VEGETATION Library of Vegetation
DRAINAGE NETWORK ~ SOIL and Soil Parameters

Climate  Disturbance
Time Series  History %I-ll_ﬁ-%sl_#

|
¥ RHESSys ! Timeseries

....
qical
I

Hierarchical
and
Distributed
Elements

Creation of
Worldfile and Process Based

Elowtable Sub-Models

(Tague & Band, 2004)
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« GAhoad™ Overstory

Precipitation o :"d 3
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Thmughraﬂl Transpiration Additional deep
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Subsurface
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Western Cascades (surface-flow)
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Western Cascades (surface-flow)

A Pracip(ing

RECHARGE
1.5° climate
warming

)

High Cascades (spring-fed)

e Srecping

10, { 4

il

Deep Ground Water to Stream (gw2)

Aye Unit Discharge
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0.1 A
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Mean unit discharge (mm/day)

- wetter A. High Cascade
winters (920-2035m)
6 -
4 - earlier and lower
snowmelt peak
27 decreased
summer flow
O | | | | | | | | | | |
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Modeling scenarios: current climate; 1.5°C/1.5°C warming
14
12 - B. Western Cascad
wetter (410-1630m)
10 A winters

minimal
snowmelt

earlier summer
drought

Feb Mar Apr May Jun

Jul  Aug Sep Oct Nov

|
Dec



Historical Trends from Cascade Streams
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McKenzie Bridge
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(Jefferson, 2006; Jefferson et al., 2008)




Daily discharge (log unit m3/s) for 1964-2007

— Clear Lake

—~10.2
-0.0 winter
-0.2 storms
--0.4
-0.6
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Water Year
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Slow draining
(low k)

Drainage
Efficiency
(k)

Fast draining
(high k)

Climate / Precipitation
(snow fraction)

Rain dominated Snowmelt dominates

Rain | Mixed | Show
Slow | Slow | Slow
Rain | Mixed| Show
Fast | Fast | Fast




Classification of
Study Basins

457N+

40°N-

35°N-
Watershed Classification
@LR (Low k- Rain) X
OLM (Low k - Mixture of Rain & Snow) +
QLS (Low k- Snow)
AHR (High k - Rain)

AHM (High k- Mixture of Rain & S80%) ;100 200 480 600
/\HS (High k - Snow)

125°W 120°W 115°W 110°W

Source: Safeeq et al., in review



Ensemble Hydrographs

Rain Mixed Snow

Groundwater-Rain (LR, n=5) Groundwater-Mixture of rain & snow (LM, n=24) Groundwater-Snow (LS, n=25)

|Low k (slow draining)

Ot Nov Dee Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dee Jan Feb Mar Apr May Jun Jul Aug Sep

Surface flow-Rain (HR, n=9) Surface flow-Mixture of rain & snow (HM, n=9) Surface flow-Snow (HM, n=9)

| High k (fast draining)
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Source: Safeeq et al., in review



Historical Trends in Summer Runoff Ratio (1950-2010)

(Qqummer/ Annual Precipitation)
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geology |

Oregon Cascades
Young volcanic rocks =
Large groundwater system

Water stored in:
e groundwater
e snowpacks

e reservoirs

Sierra Nevada
Old granitic rocks =
Surface-flow dominated

Water stored in:
e snowpacks
e reservoirs
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Greater Battle Creek Watershed

(A.k.a. Upper Battle Creek Hydrologic Sub-area)

Coleman
Fish Hatchery

Dam
Land Ownership
Bureau of Land M anagermearnt
C:A Diept of Fish and Garme 24 Dam to be removed
CA Dept of Forestry and Fire Protection
CA Stae Lands Cormnission

Dam to be modfied

@ water quality station

Mational Park Service »  wWeather station A
The Mature Conservancy ) ] _ )
USDA Forest Service Matural barrier to fish migraton

) I ] 3 B Miles
Private //, SPItimbedands WAk I

Figure 1 from James & MacDonald, 2012
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From Clynne & Muffler, 2012: Geologic Map of Lassen Volcanic National Park and vicinity



Water Year 2009

Grace Lake M
3740 Cow Creek *
Mren Kilare !
Powerplant 1——— - 1 Fenwerplant : ]
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| F i ork
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3760 South Cow Creek EE‘:.,;',EL:, ' [ . . A }ﬂiﬁfff%ﬁ“
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A 37208 378043 - 3760.1 3760.15
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F 5 r 7 r 3
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44—  Stream, open flume, or canal showing

direction of flow
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showing direction of flow

Figure showing diversions and storage in Battle Creek and Cow Creek Basins.



100.00

—NMcKenzie at Belknap Springs (374km2)
—Little North Santiam (287km2)
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Daily discharge (log unit m3/s) for Battle Creek
1942-1961 (#11376500) 1962-2011(#11376550)
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Some thoughts on hydrologic
response to vegetation
manipulation (i.e., harvest) In
young volcanic terranes with
deep groundwater systems



Harvest effects on peak flows

e No paired watershed experiments to draw
on

e From first principles, effect of harvest on
peak flows should be LESS than in shallow
subsurface flow systems

- Lower drainage density
- Longer response times
- More bypass recharge




Hydrologic effects of forest
management activities in a
young volcanic setting
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Figure 7 - Maximum recurrence interval
at the detection limit as a function of the

percent harvested.

Grant et al, 2008; PNWGTR-760

USDA
i

Effects of Forest Practices on
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Figure 10 - Peak flow response to harvest in the transient snow hydrologic zone.

Solid line represents maximum values reported for basins without roads. Dashed line is a linear fit

through the average values from figure 8d, and represents the mean reported change for all data.

Dashed gray line represents interpreted change with roads, and is a linear fit through a doubling of
the average values. Gray shading around zero indicates limit of detection (£10 percent).
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Figure 13 - Domains for initiation of bedload sediment transport as a function of
channel type (Grant et al., 1990; Montgomery and Buffington, 1997) and recurrence
interval (Pickup and Warner, 1976; Andrews, 1984; Grant et al., 1990; Wohl, 2000;
Topping et al., 2000a,b).



Harvest effects on low flows

e No paired watershed studies

 On one hand, greater bypass recharge
means less opportunity for vegetation
effect

e On the other hand, system has longer
“memory”, so may see effects of
vegetation removal (increased low flows)

e Confounding effect of climate change?



Battle Creek turbidity
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Figure 3. Frequency distribution of the mean daily turbidities by turbidity classes for the three
long-term monitoring stations on Bailey Creek.



Battle Creek turbidity

Figure 2

Pre-Clear-Cutting, 1999-2001 Post-Clear-Cutting, 2009-2011
Turbidity Greater Than 5 Turbidity Greater Than 5 NTU's
NTU's 7% of the time 30%-89% of the time




Battle Creek turbidity
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Figure 9. Percent of days with a mean turbidity 225 NTU by year for Upper Bailey Creek, Upper
Bailey Creek 2, and Lower Bailey Creek.






