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The Ultimate Hydrologic Sponge: 
how the plumbing system of the Cascades 

controls streamflow, geomorphology, 
and response to disturbance



• The Cascades: a peculiar landscape
• The hydrologic plumbing system of the 

Oregon Cascades
• Implications for geomorphic processes 

and water quality
• How might this apply to Battle Creek and 

environs?
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Deschutes River at Madras







• Extremely stable flow regime
• Very little sediment transport
• Modern big floods don’t do much
• Big dams don’t do much (at least to 

the physical channel)
• Ancient big floods did a lot!

What we learned…



“The Deschutes is of especial interest to 
geographers as it exhibits certain 

peculiarities not commonly met with”

I.C. Russell (1905)

O’Connor & Grant, 2003



Are there other peculiar places?

• Drains an uplifted, 
young volcanic 
arc, 

• squarely in the path 
of westerly 
prevailing winds, 

• at a temperate 
latitude, 

• near a source of 
marine moisture.
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High Cascade: 
McKenzie River at Belknap (374 km2)

Western Cascade: 
Little North Santiam (287 km2)



Western Cascades

High Cascades

Western Cascades

Older (7-30 million year old) volcaniclastic rocks 
and basaltic lava flows



High Cascades

High Cascades

Western Cascades

Young basalts, basaltic andesites, 
andesites, pumice, and ash < 7 million years 
old

Youngest McKenzie Pass lava 
flows (≤ 1600 years old)





What determines the permeability 
of lava flows?

1. Rock lithology

Cascade basalts 
(Saar & Manga, 1999)

Graphic after Hornberger et.
Al., 1998



Flow type (blocky, aa, pahoehoe)

Flow topography & fractures

2. Flow structure





(after Katz and Cashman) 
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3. Layering within flows 
and multiple flows

Permeability (k)

Depth 

Saar & Manga, 
2003



Groundwater flowpaths and geologic history

• Aquifers constrained by lava flow geometry not 
always by topography

• Flowpaths are shallow with geothermal 
influence at fault zones

(Jefferson et al., 2006)



Extensive 
Holocene and 

late Pleistocene 
lava flows.

(Jefferson, 2006)
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Lost Springs

Roaring Springs







How old is the water coming out of the springs?

Transit times derived from 3H/3He using 
exponential and gamma distributions

Ages range from 3-14 years
Flow-weighted average = 7.2 years



High 
Cascades

BASALTS 
of the 

OREGON 
CASCADES

= 2660 km2

How big 
is the 
sponge?



How much water does 
the sponge hold?

1500 mm/yr 

x 2660 km2

x 7.2 year average 
residence time

~29 km3



How much water 
does this sponge 
hold?

1500 mm/yr x 2660 km2 x 5 
year average residence time

Great Salt Lake, 
Utah = 19km3

~29 km3
Crater Lake, Oregon = 17km3

Lake Mead = 35 km3



Aquifer Thickness

30 – 120 m (at 15% porosity)

Groundwater velocity

v ~ 0.1 – 0.6 m/day

Hydraulic conductivity 

10-4 ≤ Kx ≤ 10-2 m/s



82% of August flow 
from springs

36% of March flow 
from springs
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High Cascades 
• Stable wood 
accumulations
•Lack developed floodplain
• Rare floods
• Sustained flow year-round
• Disorganized bed 
structures

Western Cascades
• Mobile wood 

• Coarse floodplains 
& boulder bars

• Rain-on-snow floods
• Flow varies seasonally
• Step-pool organization



Storm of January 30, 2003

Deer Creek

(Western Cascades)
Upper McKenzie River 

(High Cascades)

55.1 NTUs
3 NTUs

1.75 miles downstream  (after mixing) 19 NTUs
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Bull trout 
distribution 
and geology
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The Paradox of 
Water in the West…

“T�� �������� �� ��� ����� �������� �� 
”



average annual for Pacific Northwest



a. Observed            1950-1997 b. Modeled   

Mote et 
al., 2005

Snowpacks have 
gotten smaller, are 

melting earlier…

Historic linear trends in April 1 Snow Water 
Equivalent

…and are projected to 
continue to diminish.

Gregory and 
Wolock, 1999



(Nolin and Daly, 2006)

Snow at risk in a warming climate



How will the 
interplay of 

snowpack dynamics 
and landscape 

drainage efficiency 
affect streamflow 

regimes under 
climate warming 

scenarios? 



Using a hydrologic model (RHESSys) to explore 
streamflow response to climate warming

(Tague & Band, 2004)



Original RHESSys framework

Additional deep 
groundwater component 
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Western Cascades (surface-flow)

snow

rain

High Cascades (spring-fed)

rain

snow
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1.5° climate 

warming

DISCHARGE
1.5° climate 

warming? ?
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Historical Trends from Cascade Streams

0

50

100

150

10/1/01 12/1/01 2/1/02 4/1/02 6/1/02 8/1/02 10/1/02

D
is

ch
ar

ge
 (m

3 /s
)

Temporal 
Centroid (Tc)

(Jefferson, 2006; Jefferson et al., 2008)

Between 1948 and 2006 for Clear Lake:
Temporal centroid - 14 days earlier
Autumn minimum discharge - 1.4 cms lower
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Daily discharge (log unit m3/s) for 1964-2007
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Classification of 
Study Basins

Source: Safeeq et al., in review



Low k (slow draining)

High k (fast draining)

Rain Mixed Snow

Ensemble Hydrographs

Source: Safeeq et al., in review



Historical Trends in Summer Runoff Ratio (1950–2010)
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US Geological survey

geology topography

Water stored in: 
• groundwater
• snowpacks
• reservoirs

Oregon Cascades
Young volcanic rocks = 

Large groundwater system

Water stored in: 
• snowpacks 
• reservoirs

Sierra Nevada 
Old granitic rocks = 

Surface-flow dominated





Figure 1 from James & MacDonald, 2012



From Clynne & Muffler, 2012: Geologic Map of Lassen Volcanic National Park and vicinity





1961 1962



Daily discharge (log unit m3/s) for Battle Creek 
1942-1961 (#11376500) 1962-2011(#11376550)
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Some thoughts on hydrologic 
response to vegetation 

manipulation (i.e., harvest) in 
young volcanic terranes with 
deep groundwater systems



Harvest effects on peak flows

• No paired watershed experiments to draw 
on

• From first principles, effect of harvest on 
peak flows should be LESS than in shallow 
subsurface flow systems
– Lower drainage density
– Longer response times
– More bypass recharge



Figure 7 - Maximum recurrence interval 
at the detection limit as a function of the 
percent harvested. 

Grant et al, 2008; PNWGTR-760

Hydrologic effects of forest 
management activities in a 

young volcanic setting



Grant et al, 2008; PNWGTR-760

Figure 10 - Peak flow response to harvest in the transient snow hydrologic zone.
Solid line represents maximum values reported for basins without roads. Dashed line is a linear fit 
through the average values from figure 8d, and represents the mean reported change for all data.  
Dashed gray line represents interpreted change with roads, and is a linear fit through a doubling of 
the average values.  Gray shading around zero indicates limit of detection (±10 percent).



Grant et al, 2008; PNWGTR-760

Figure 13 - Domains for initiation of bedload sediment transport as a function of 
channel type (Grant et al., 1990; Montgomery and Buffington, 1997) and recurrence 
interval (Pickup and Warner, 1976; Andrews, 1984; Grant et al., 1990; Wohl, 2000; 
Topping et al., 2000a,b). 



Harvest effects on low flows

• No paired watershed studies
• On one hand, greater bypass recharge 

means less opportunity for vegetation 
effect

• On the other hand, system has longer 
“memory”, so may see effects of 
vegetation removal (increased low flows)

• Confounding effect of climate change?



Battle Creek turbidity



Battle Creek turbidity



Battle Creek turbidity



Extra Slides

www.fsl.orst.edu/wpg


